Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519469

RESUMEN

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Células Asesinas Naturales , Proteína smad3/genética , Proteína smad3/metabolismo , Proteínas que Contienen Bromodominio
2.
Cell Death Dis ; 14(11): 752, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980331

RESUMEN

Long non-coding RNAs (lncRNAs) are transcripts without coding potential that are pervasively expressed from the genome and have been increasingly reported to play crucial roles in all aspects of cell biology. They have been also heavily implicated in cancer development and progression, with both oncogenic and tumor suppressor functions. In this work, we identified and characterized a novel lncRNA, TAZ-AS202, expressed from the TAZ genomic locus and exerting pro-oncogenic functions in non-small cell lung cancer. TAZ-AS202 expression is under the control of YAP/TAZ-containing transcriptional complexes. We demonstrated that TAZ-AS202 is overexpressed in lung cancer tissue, compared with surrounding lung epithelium. In lung cancer cell lines TAZ-AS202 promotes cell migration and cell invasion. TAZ-AS202 regulates the expression of a set of genes belonging to cancer-associated pathways, including WNT and EPH-Ephrin signaling. The molecular mechanism underlying TAZ-AS202 function does not involve change of TAZ expression or activity, but increases the protein level of the transcription factor E2F1, which in turn regulates the expression of a large set of target genes, including the EPHB2 receptor. Notably, the silencing of both E2F1 and EPHB2 recapitulates TAZ-AS202 silencing cellular phenotype, indicating that they are essential mediators of its activity. Overall, this work unveiled a new regulatory mechanism that, by increasing E2F1 protein, modifies the non-small cell lung cancer cells transcriptional program, leading to enhanced aggressiveness features. The TAZ-AS202/E2F1/EPHB2 axis may be the target for new therapeutic strategies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Efrinas/genética , Efrinas/metabolismo , Línea Celular Tumoral , Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/genética
3.
NAR Cancer ; 4(3): zcac024, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35910692

RESUMEN

Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients' survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.

4.
Oncogene ; 41(29): 3665-3679, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35705735

RESUMEN

EGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia. However, EGLN family members activity is not limited to HIF modulation, but it includes the regulation of essential mechanisms for cell survival, cell cycle metabolism, proliferation and transcription. This is due to their reported hydroxylase activity on a number of non-HIF targets and sometimes to hydroxylase-independent functions. For these reasons, EGLN enzymes appear fundamental for development and progression of different cancer types, playing either a tumor-suppressive or a tumor-promoting role, according to EGLN isoform and to tumor context. Notably, EGLN1, the most studied isoform, has been shown to have also a central role in tumor micro-environment modulation, mediating CAF activation and impairing HIF1α -related angiogenesis, thus covering an important function in cancer metastasis promotion. Considering the recent knowledge acquired on EGLNs, the possibility to target these enzymes for cancer treatment is emerging. However, due to their multifaceted and controversial roles in different cancer types, the use of EGLN inhibitors as anti-cancer drugs should be carefully evaluated in each context.


Asunto(s)
Neoplasias , Prolil Hidroxilasas , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Microambiente Tumoral
5.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G243-G251, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259574

RESUMEN

The gallbladder is considered an important organ in maintaining digestive and metabolic homeostasis. Given that therapeutic options for gallbladder diseases are often limited to cholecystectomy, understanding gallbladder pathophysiology is essential in developing novel therapeutic strategies. Since liver X receptor ß (LXRß), an oxysterol-activated transcription factor, is strongly expressed in gallbladder cholangiocytes, the aim was to investigate LXRß physiological function in the gallbladder. Thus, we studied the gallbladders of WT and LXRß-/- male mice using immunohistochemistry, electron microscopy, qRT-PCR, bile duct cannulation, bile and blood biochemistry, and duodenal pH measurements. LXRß-/- mice presented a large gallbladder bile volume with high duodenal mRNA levels of the vasoactive intestinal polypeptide (VIP), a strong mediator of gallbladder relaxation. LXRß-/- gallbladders showed low mRNA and protein expression of Aquaporin-1, Aquaporin-8, and cystic fibrosis transmembrane conductance regulator (CFTR). A cystic fibrosis-resembling phenotype was evident in the liver showing high serum cholestatic markers and the presence of reactive cholangiocytes. For LXRß being a transcription factor, we identified eight putative binding sites of LXR on the promoter and enhancer of the Cftr gene, suggesting Cftr as a novel LXRß regulated gene. In conclusion, LXRß was recognized as a regulator of gallbladder bile volume through multiple mechanisms involving CFTR and aquaporins.NEW & NOTEWORTHY This report reveals a novel and specific role of the nuclear receptor liver X receptor ß (LXRß) in controlling biliary tree pathophysiology. LXRß-/- mice have high gallbladder bile volume and are affected by a cholangiopathy that resembles cystic fibrosis. We found LXRß to regulate the expression of both aquaporins water channels and the cystic fibrosis transmembrane conductance regulator. This opens a new field in biliary tree pathophysiology, enlightening a possible transcription factor controlling CFTR expression.


Asunto(s)
Acuaporina 1/metabolismo , Acuaporinas/metabolismo , Bilis/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Vesícula Biliar/metabolismo , Receptores X del Hígado/metabolismo , Animales , Acuaporina 1/genética , Acuaporinas/genética , Sitios de Unión , Proliferación Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Duodeno/metabolismo , Vesícula Biliar/ultraestructura , Receptores X del Hígado/genética , Masculino , Ratones Noqueados , Regiones Promotoras Genéticas , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
6.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34298691

RESUMEN

Lung cancer is the leading cause of cancer-related human death. It is a heterogeneous disease, classified in two main histotypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which is further subdivided into squamous-cell carcinoma (SCC) and adenocarcinoma (AD) subtypes. Despite the introduction of innovative therapeutics, mainly designed to specifically treat AD patients, the prognosis of lung cancer remains poor. In particular, available treatments for SCLC and SCC patients are currently limited to platinum-based chemotherapy and immune checkpoint inhibitors. In this work, we used an integrative approach to identify novel vulnerabilities in lung cancer. First, we compared the data from a CRISPR/Cas9 dependency screening performed in our laboratory with Cancer Dependency Map Project data, essentiality comprising information on 73 lung cancer cell lines. Next, to identify relevant therapeutic targets, we integrated dependency data with pharmacological data and TCGA gene expression information. Through this analysis, we identified CSNK1A1, KDM2A, and LTB4R2 as relevant druggable essentiality genes in lung cancer. We validated the antiproliferative effect of genetic or pharmacological inhibition of these genes in two lung cancer cell lines. Overall, our results identified new vulnerabilities associated with different lung cancer histotypes, laying the basis for the development of new therapeutic strategies.

8.
Trends Biochem Sci ; 46(2): 154-168, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32981815

RESUMEN

Yes-associated protein (YAP) and TAZ (WW domain containing transcription regulator 1, or WWTR1) are paralog transcriptional regulators, able to integrate mechanical, metabolic, and signaling inputs to regulate cell growth and differentiation during development and neoplastic progression. YAP and TAZ hold common and distinctive structural features, reflecting only partially overlapping regulatory mechanisms. The two paralogs interact with both shared and specific transcriptional partners and control nonidentical transcriptional programs. Although most of the available literature considers YAP and TAZ as functionally redundant, they play distinctive or even contrasting roles in different contexts. The issue of their divergent roles is currently underexplored but holds fundamental implications for mechanistic and translational studies. Here, we aim to review the available literature on the biological functions of YAP and TAZ, highlighting differential roles that distinguish these two paralogues.


Asunto(s)
Transducción de Señal , Diferenciación Celular , Proliferación Celular
9.
Biochim Biophys Acta Rev Cancer ; 1873(1): 188341, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31931113

RESUMEN

Understanding the molecular mechanisms driving resistance to anti-cancer drugs is both a crucial step to define markers of response to therapy and a clinical need in many cancer settings. YAP and TAZ transcriptional cofactors behave as oncogenes in different cancer types. Deregulation of YAP/TAZ expression or alterations in components of the multiple signaling pathways converging on these factors are important mechanisms of resistance to chemotherapy, target therapy and hormone therapy. Moreover, response to immunotherapy may also be affected by YAP/TAZ activities in both tumor and microenvironment cells. For these reasons, various compounds inhibiting YAP/TAZ function by different direct and indirect mechanisms have been proposed as a mean to counter-act drug resistance in cancer. A particularly promising approach may be to simultaneously target both YAP/TAZ expression and their transcriptional activity through BET inhibitors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Microambiente Tumoral/genética , Proteínas Señalizadoras YAP
10.
Mol Cancer Res ; 18(1): 140-152, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624086

RESUMEN

Enhancer (ENH)-associated long noncoding RNAs (lncRNA) are a peculiar class of RNAs produced by transcriptionally active ENHs, owning potential gene-regulatory function. Here, we characterized RAIN, a novel ENH-associated lncRNA. Analysis of RAIN expression in a retrospective cohort of human thyroid cancers showed that the expression of this lncRNA is restricted to cancer cells and strongly correlates with the expression of the cancer-promoting transcription factor RUNX2. We showed that RAIN, serving as a cis-regulatory element, promotes RUNX2 expression by two mechanisms. Binding WDR5 and facilitating its localization on the RUNX2 promoter, RAIN modifies the transcriptional status of the RUNX2 locus facilitating transcription initiation. In parallel, RAIN acts as decoy for negative elongation factor complex, restraining its inhibitory function on transcription elongation. In both thyroid and breast cancer cells, RAIN promotes oncogenic features. Using RNA-sequencing profiling, we showed that RAIN orchestrates the expression of a network of cancer-promoting transcription regulators, suggesting that RAIN affects cancer cell phenotype by coordinating the expression of a complex transcriptional network. IMPLICATIONS: Our data contribute to understand lncRNA function in gene regulation and to consolidate their role in cancer.


Asunto(s)
Neoplasias de la Mama/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/efectos adversos , ARN Largo no Codificante/genética , Neoplasias de la Tiroides/genética , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos , Masculino
11.
J Exp Clin Cancer Res ; 38(1): 346, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395086

RESUMEN

BACKGROUND: RUNX2 is a Runt-related transcription factor required during embryogenesis for skeletal development and morphogenesis of other organs including thyroid and breast gland. Consistent evidence indicates that RUNX2 expression is aberrantly reactivated in cancer and supports tumor progression. The mechanisms leading to RUNX2 expression in cancer has only recently began to emerge. Previously, we showed that suppressing the activity of the epigenetic regulators HDACs significantly represses RUNX2 expression highlighting a role for these enzymes in RUNX2 reactivation in cancer. However, the molecular mechanisms by which HDACs control RUNX2 are still largely unexplored. Here, to fill this gap, we investigated the role of different HDACs in RUNX2 expression regulation in breast and thyroid cancer, tumors that majorly rely on RUNX2 for their development and progression. METHODS: Proliferation assays and evaluation of RUNX2 mRNA levels by qRT-PCR were used to evaluate the effect of several HDACi and specific siRNAs on a panel of cancer cell lines. Moreover, ChIP and co-IP assays were performed to elucidate the molecular mechanism underneath the RUNX2 transcriptional regulation. Finally, RNA-sequencing unveiled a new subset of genes whose transcription is regulated by the complex RUNX2-HDAC6. RESULTS: In this study, we showed that Class I HDACs and in particular HDAC1 are required for RUNX2 efficient transcription in cancer. Furthermore, we found an additional and cell-specific function of HDAC6 in driving RUNX2 expression in thyroid cancer cells. In this model, HDAC6 likely stabilizes the assembly of the transcriptional complex, which includes HDAC1, on the RUNX2 P2 promoter potentiating its transcription. Since a functional interplay between RUNX2 and HDAC6 has been suggested, we used RNA-Seq profiling to consolidate this evidence in thyroid cancer and to extend the knowledge on this cooperation in a setting in which HDAC6 also controls RUNX2 expression. CONCLUSIONS: Overall, our data provide new insights into the molecular mechanisms controlling RUNX2 in cancer and consolidate the rationale for the use of HDACi as potential pharmacological strategy to counteract the pro-oncogenic program controlled by RUNX2 in cancer cells.


Asunto(s)
Comunicación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Comunicación Celular/efectos de los fármacos , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Modelos Biológicos , Complejos Multiproteicos , Neoplasias/patología , Unión Proteica , ARN Interferente Pequeño/genética , Neoplasias de la Tiroides/etiología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Transcripción Genética
12.
Oncogene ; 38(42): 6801-6817, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31406246

RESUMEN

Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Células A549 , Sistemas CRISPR-Cas , Carcinoma de Pulmón de Células no Pequeñas/patología , Núcleo Celular/metabolismo , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética
13.
Cancers (Basel) ; 11(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841549

RESUMEN

Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.

14.
Clin Cancer Res ; 25(7): 2348-2360, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587547

RESUMEN

PURPOSE: Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive form of NSCLC. Rarity and poor characterization have limited the development of PSC-tailored treatment protocols, leaving patients with inadequate therapeutic options. In this study, we investigated the gene expression profile of PSCs, with the aim to characterize the molecular mechanisms responsible for their evolution and to identify new drugs for their treatment. EXPERIMENTAL DESIGN: A training set of 17 biphasic PSCs was selected and tested for the expression of a large panel of 770 genes related to cancer progression using NanoString technology. Computational analyses were used to characterize a PSCs-gene specific signature from which pathways and drivers of PSC evolution were identified and validated using functional assays in vitro. This signature was validated in a separate set of 15 PSCs and 8 differentiated NSCLC and used to interrogate the cMAP database searching for FDA-approved small molecules able to counteract PSC phenotype. RESULTS: We demonstrated that the transcriptional activation of an epithelial mesenchymal transition (EMT) program drives PSC phylogeny in vivo. We showed that loss of the epithelial-associated transcription factor (TF) OVOL2 characterizes the transition to sarcomatoid phenotype triggering the expression of EMT promoting TFs, including TWIST and ZEB and the expression of the membrane kinase DDR2. Finally, using a drug repurposing approach, we identified dasatinib as potential inhibitor of the PSC-gene expression signature and we confirmed in vitro that this drug efficiently restrains proliferation and reverts the sarcomatoid-associated phenotype. CONCLUSIONS: Our data provide new insights into PSC evolution and provide the rationale for further clinical studies with dasatinib.


Asunto(s)
Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Sarcoma/etiología , Sarcoma/metabolismo , Transcripción Genética , Antineoplásicos/farmacología , Línea Celular Tumoral , Biología Computacional/métodos , Dasatinib/farmacología , Sustitución de Medicamentos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Modelos Biológicos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Factor de Crecimiento Transformador beta/metabolismo
15.
Oncotarget ; 9(2): 1813-1825, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29416733

RESUMEN

BACKGROUND: Papillary Thyroid Carcinomas (PTCs) are generally indolent tumors. However, a small but significant percentage of PTCs behaves aggressively, progressing to a diffuse metastatic spreading and leading to patient's death. The lack of reliable markers for predicting the metastatic behavior of these tumors prevents a correct risk based stratification of the disease, thus contributing to the issue of patients' overtreatment. In this study we aimed at identifying genetic features associated with the development of distant metastasis in PTCs. RESULTS: We showed that DM PTCs are characterized by a moderate degree of copy number alterations but display low level of microsatellite instability and a low mutational burden. We identified duplication of Chr1q, duplication of Chr5p harboring the TERT genomic locus and mutations of TERT promoter as distinctive features of DM PTCs. These three genetic variables defined a signature (THYT1) that was significantly associated with a metastatic behavior and a shortened survival. We analyzed the THYT1 signature in PTCs fine needle aspirate biopsies (FNAB) and we demonstrating the applicability of this signature as a molecular marker in the pre-operative diagnostic setting of PTCs. MATERIALS AND METHODS: A consecutive series of 2,937 thyroid malignancies, diagnosed at the Arcispedale S. Maria Nuova - IRCCS, Italy between 1978 and 2015 were searched to retrieve those who developed distant metastasis (DM, n = 50). We performed a deep profiling to explore the genomic landscape of these tumors. CONCLUSIONS: Overall our data identify the first genetic signature that independently predicts metastasis and negative outcome of PTCs, and lay the basis for the possible application of the THYT1 as prognostic marker to improve risk-based stratification and management of PTC patients.

16.
Nucleic Acids Res ; 45(19): 11249-11267, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28981843

RESUMEN

Aberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown. Here we showed that RUNX2 transcription in thyroid and breast cancer requires the cooperation of three distantly located enhancers (ENHs) brought together by chromatin three-dimensional looping. We showed that BRD4 controls RUNX2 by binding to the newly identified ENHs and we demonstrated that the anti-proliferative effects of bromodomain inhibitors (BETi) is associated with RUNX2 transcriptional repression. We demonstrated that each RUNX2 ENH is potentially controlled by a distinct set of TFs and we identified c-JUN as the principal pivot of this regulatory platform. We also observed that accumulation of genetic mutations within these elements correlates with metastatic behavior in human thyroid tumors. Finally, we identified RAINs, a novel family of ENH-associated long non-coding RNAs, transcribed from the identified RUNX2 regulatory unit. Our data provide a new model to explain how RUNX2 expression is reactivated in thyroid and breast cancer and how cancer-driving signaling pathways converge on the regulation of this gene.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-jun/genética , Factores de Transcripción/genética , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Elementos de Facilitación Genéticos/genética , Humanos , Células MCF-7 , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-jun/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Factores de Transcripción/metabolismo
18.
Cell Death Dis ; 7(12): e2520, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929542

RESUMEN

Autophagy and epithelial to mesenchymal transition (EMT) are major biological processes in cancer. Autophagy is a catabolic pathway that aids cancer cells to overcome intracellular or environmental stress, including nutrient deprivation, hypoxia and drugs effect. EMT is a complex transdifferentiation through which cancer cells acquire mesenchymal features, including motility and metastatic potential. Recent observations indicate that these two processes are linked in a complex relationship. On the one side, cells that underwent EMT require autophagy activation to survive during the metastatic spreading. On the other side, autophagy, acting as oncosuppressive signal, tends to inhibit the early phases of metastasization, contrasting the activation of the EMT mainly by selectively destabilizing crucial mediators of this process. Currently, still limited information is available regarding the molecular hubs at the interplay between autophagy and EMT. However, a growing number of evidence points to the functional interaction between cytoskeleton and mitochondria as one of the crucial regulatory center at the crossroad between these two biological processes. Cytoskeleton and mitochondria are linked in a tight functional relationship. Controlling mitochondria dynamics, the cytoskeleton cooperates to dictate mitochondria availability for the cell. Vice versa, the number and structure of mitochondria, which are primarily affected by autophagy-related processes, define the energy supply that cancer cells use to reorganize the cytoskeleton and to sustain cell movement during EMT. In this review, we aim to revise the evidence on the functional crosstalk between autophagy and EMT in cancer and to summarize the data supporting a parallel regulation of these two processes through shared signaling pathways. Furthermore, we intend to highlight the relevance of cytoskeleton and mitochondria in mediating the interaction between autophagy and EMT in cancer.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Neoplasias/patología , Animales , Citoesqueleto/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , Transducción de Señal
19.
Pigment Cell Melanoma Res ; 29(2): 163-75, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26575206

RESUMEN

Recent evidence indicates that melanoma comprises distinct types of tumors and suggests that specific morphological features may help predict its clinical behavior. Using a SNP-array approach, we quantified chromosomal copy number alterations (CNA) across the whole genome in 41 primary melanomas and found a high degree of heterogeneity in their genomic asset. Association analysis correlating the number and relative length of CNA with clinical, morphological, and dermoscopic attributes of melanoma revealed that features of aggressiveness were strongly linked to the overall amount of genomic damage. Furthermore, we observed that melanoma progression and survival were mainly affected by a low number of large chromosome losses and a high number of small gains. We identified the alterations most frequently associated with aggressive melanoma, and by integrating our data with publicly available gene expression profiles, we identified five genes which expression was found to be necessary for melanoma cells proliferation. In conclusion, this work provides new evidence that the phenotypic heterogeneity of melanoma reflects a parallel genetic diversity and lays the basis to define novel strategies for a more precise prognostic stratification of patients.


Asunto(s)
Proliferación Celular/genética , Aberraciones Cromosómicas , Estudio de Asociación del Genoma Completo , Melanoma/genética , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Humanos , Masculino , Melanoma/diagnóstico , Pronóstico
20.
Int J Mol Sci ; 16(8): 19612-30, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26295387

RESUMEN

Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Receptores ErbB/sangre , Neoplasias Pulmonares/diagnóstico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Detección Precoz del Cáncer , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA